4. PERMUTATIONS AND COMBINATIONS
 Quick Review

1. An arrangement that can be formed by taking some or all of a finite set of things (or objects) is called a permutation.
2. A permutation is said to be a linear permutation if the objects are arranged in a line. A linear permutation is simply called as a permutation.
3. A permutation is said to be a circular permutation if the objects are arranged in the form of a circle (a closed curve).
4. The number of (linear) permutations that can be formed by taking r things at a time from a set of n dissimilar things $(r \leq n)$ is denoted by ${ }^{n} P_{r}$ or $P(n, r)$ or $P\binom{n}{r}$.
5. The number of permutations of n dissimilar things taken r at a time is equal to the number of ways of filling of r blank places arranged in a row by n dissimilar things.
6. Fundamental counting principle : If an operation can be performed in mays and a second operation can be performed in n ways corresponding to each performance of the first operation, then the two operations in succession can be performed in mn ways.
7. If in k operations, the first operation can be performed in n_{1} ways, the second operation can be performed in n_{2} ways, third operation can be performed in n_{3} ways and so on, then the k operations in succession can be performed in $n_{1} n_{2} n_{3} \ldots n_{k}$ ways.
8. ${ }^{n} P_{r}=n(n-1)(n-2) \ldots(n-r+1)$.
9. If n is a non-negative integer, then factorial n is denoted by n or $\angle \mathrm{n}$ and defined as follows.
(i) $0!=1$; (ii) If $\mathrm{n}>0$ then $\mathrm{n}!=\mathrm{n} \times(\mathrm{n}-1)$!
10. If n is a positive integer, then n ! is the product of first n positive integers. i.e., $\mathrm{n}!=1.2 .3$...n.
11. ${ }^{n} P_{r}=\frac{n!}{(n-r)!}$
12. The number of permutations of n dissimilar things taken all at a time is ${ }^{n} P_{n}=n!$.
13. ${ }^{n} P_{r}={ }^{(n-1)} P_{r}+r^{(n-1)} P_{r-1}$.
14. The number of injections (one-one functions) that can be defined from a set containing r elements into a set containing n elements is ${ }^{n} P_{r}$.
15. The number of bijections (one-one onto functions) that can be defined from a set containing n elements onto a set containing n elements is $n!$.
16. The number of permutations of n dissimilar things taken r at a time when repetition of things is allowed any number of times is n^{r}.
17. The number of permutations of n dissimilar things taken not more than r at a time, when each thing may occur any number of times is $\frac{n\left(n^{r}-1\right)}{n-1}$.
18. The number of functions that can defined from a set containing r elements into a set containing n elements is n^{r}.
19. The number of permutations of n things taken all at a time when p of them are all alike and the rest all different is $\frac{\mathrm{n}!}{\mathrm{p}!}$.
20. If p_{1} things are alike of one kind, p_{2} things are alike of second kind, p_{3} things are alike of third kind and so on, p_{k} things are alike of $\mathrm{k}^{\text {th }}$ kind in $\mathrm{p}_{1}+\mathrm{p}_{2}+\ldots+\mathrm{p}_{\mathrm{k}}$ things, then the number of permutations obtained by taking all the things is $\frac{\left(p_{1}+p_{2}+\ldots+p_{k}\right)!}{p_{1}!p_{2}!\ldots p_{k}!}$.
21. The number of circular permutations on n different things taken r at a time is $\frac{{ }^{n} P_{r}}{r}$.
22. The number of circular permutations of n different things taken all at a time is $(n-1)$!.
23. The number of circular permutations of n things taken r at a time in one direction is $\frac{{ }^{n} P_{r}}{2 r}$.
24. The number of circular permutations of n things taken all at a time in one direction is $\frac{1}{2}(n-1)$!.
25. (i) ${ }^{n} P_{r}+r .{ }^{n} P_{r-1}={ }^{(n+1)} P_{r}$
(ii) $\frac{{ }^{n} P_{r}}{{ }^{n-1} P_{r-1}}=n$
(iii) $\frac{{ }^{n} P_{r}}{{ }^{n} P_{r-1}}=n-r+1$.
26. If n is a positive integer and p is a prime number then the exponent of p in n ! is $\left[\frac{n}{p}\right]+\left[\frac{n}{p^{2}}\right]+\left[\frac{n}{p^{3}}\right]+\ldots$ where $[x]$ denotes the greatest integer $\leq x$.
27. The number of ways in which m (first type of different) things and n (second type of different) things ($m+1 \geq \mathrm{n}$) can be arranged in a row so that no two things of second kind come together is $m!{ }^{(m+1)} P_{n}$.
28. The number of ways in which m (first type of different) things and n (second type of different) things can be arranged in a row so that all the second type of things come together is $n!(m+1)!$.
29. The number of ways in which n(first type of different) things and n (second type of different) things can be arranged in a row alternatively is $2 \times n!\times n!$.
30. Sum of the numbers formed by taking all the given n digits (excluding 0) is (Sum of all the n digits) $\times(n-1)!\times(111 \ldots n$ times $)$.
31. Sum of the numbers formed by taking all the given n digits (including 0) is (Sum of all the n digits)
[($n-1$)! $\times(111 \ldots n$ times) $-(n-2)!(111 \ldots(n-1)$ times $)]$.
32. Sum of all r-digit numbers formed by taking the given n digits (without zero) is (sum of all the n digits) $\times{ }^{n-1} P_{r-1} \times(111 \ldots r$ times $)$.
33. Sum of all the r-digit numbers formed by taking the given n digits (including 0) is (sum of all the n digits) $\left[{ }^{n-1} P_{r-1} \times\right.$ (111.. ..r times) $-{ }^{n-2} P_{r-2} \times\{111 \ldots(r-1)$ times $\left.\}\right]$.
34. The number of ways in which m (first type of different) things and n (second type of different) things, ($\mathrm{m} \geq \mathrm{n}$) can be arranged in a circle so that no two things of second kind come together is $(m-1)!{ }^{m} P_{n}$.
35. The number of ways in which m (first type of different) things and n (second type of different) things can be arranged in a circle so that all the second type of things come together is $m!n!$.
36. The number of ways in which m (first type of different) things and n (second type of different) things can be arranged in the form of garland so that all the second type of things come together is $\mathrm{m}!\mathrm{n}!/ 2$.
37. A selection that can be formed by taking some or all of a finite set of things (or objects) is called a combination.
38. Formation of a combination by taking r elements from a finite set A means picking up an r element subset of A.
39. The number of combinations of n dissimilar things taken r at a time is equal to the number of r element subsets of a set containing n elements.
40. The number of combinations of n dissimilar things taken r at a time is denoted by ${ }^{n} C_{r}$ or $C(n, r)$ or $C\binom{n}{r}$ or $\binom{n}{r}$.
41. $\quad{ }^{n} C_{r}=\frac{n!}{r!(n-r)!}$
42. ${ }^{n} C_{r}=\frac{{ }^{n} P_{r}}{r!}=\frac{n(n-1)(n-2) \ldots(n-r+1)}{1.2 .3 \ldots r}$.
43. ${ }^{n} C_{r}={ }^{n} C_{n-r}$.
44. ${ }^{n} C_{r}+{ }^{n} C_{r-1}={ }^{(n+1)} C_{r}$.
45. If ${ }^{n} C_{r}={ }^{n} C_{s}$, then $r=s$ or $r+s=n$.
46. The number of diagonals in a regular polygon of n sides is ${ }^{n} C_{2}-n=\frac{n(n-3)}{2}$.
47. The number of ways in which $(m+n)$ things can be divided into two different groups of m and n things respectively is $\frac{(m+n)!}{m!n!}$.
48. The number of ways in which 2 n things can be divided into two equal groups of n things each is $\frac{(2 n)!}{2!(n!)^{2}}$.
49. The number of ways in which ($\mathrm{n}_{1}+\mathrm{n}_{2}+\ldots \mathrm{n}_{\mathrm{k}}$) things can be divided into k different groups of n_{1} things, n_{2} things, n_{3} things, $\ldots \ldots \ldots \ldots . n_{k}$ things respectively is $\frac{\left(n_{1}+n_{2}+\ldots+n_{k}\right)!}{n_{1}!n_{2}!\ldots n_{k}!}$.
50. The number of ways in which $k n$ things can be divided into k equal groups of n things each is $\frac{(\mathrm{kn})!}{\mathrm{k}!(\mathrm{n}!)^{k}}$.
51. The total number of combinations of $(p+q)$ things taken any number at a time when p things are alike of one kind and q things are alike of a second kind is $(p+1)(q+1)$.
52. The total number of combinations of $\mathrm{p}+\mathrm{q}$ things taken any number at a time, includes the case in which nothing will be selected.
53. The total number of combinations of $(p+q)$ things taken one or more at a time when p things are alike of one kind and q things are alike of a second kind is $(p+1)(q+1)-1$.
54. The total number of combinations of $\left(\mathrm{p}_{1}+\mathrm{p}_{2}+\ldots+\mathrm{p}_{\mathrm{k}}\right)$ things taken any number at a time when p_{1} things are alike of one kind, p_{2} things are alike of a second kind, $\ldots \mathrm{p}_{\mathrm{k}}$ things are alike of kth kind, is $\left(p_{1}+1\right)\left(p_{2}+1\right) \ldots\left(p_{k}+1\right)$.
55. The total number of combinations of $\left(\mathrm{p}_{1}+\mathrm{p}_{2}+\ldots+\mathrm{p}_{\mathrm{k}}\right)$ things taken one or more at a time when p_{1} things are alike of one kind, p_{2} things are alike of a second kind, $\ldots \mathrm{p}_{\mathrm{k}}$ things are alike of kth kind, is $\left(p_{1}+1\right)\left(p_{2}+1\right) \ldots\left(p_{k}+1\right)-1$.
56. The total number of combinations of n different things taken any number at a time is 2^{n}.
57. The total number of combinations of n different things taken one or more at a time is $2^{n}-1$.
58. ${ }^{n} C_{0}+{ }^{n} C_{1}+{ }^{n} C_{2}+\ldots{ }^{n} C_{n}=2^{n}$.
59. If n is a positive integer, then n can be uniquely expressed as $\mathrm{n}=\mathrm{p}_{1}^{\alpha_{1}} \mathrm{p}_{2}^{\alpha_{2}} \ldots \mathrm{p}_{\mathrm{k}}^{\alpha_{k}}$ where $\mathrm{p}_{1}, \mathrm{p}_{2}, \ldots \mathrm{p}_{\mathrm{k}}$ are primes in increasing order and $\alpha_{1}, \alpha_{2}, \ldots \alpha_{k}$ are non-negative integers. This representation of n is called prime factorisation of n in canonical form or prime power factorisation of n .
60. The number of positive divisors of a positive integer $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{k}^{\alpha_{k}}$ (the prime factorisation) is $\left(\alpha_{1}+1\right)\left(\alpha_{2}+1\right)\left(\alpha_{3}+1\right) \ldots\left(\alpha_{k}+1\right)$.
61. (i) ${ }^{n} C_{r}={ }^{n} C_{n-r}$
(ii) ${ }^{n} C_{r}+{ }^{n} C_{r-1}={ }^{(n+1)} C_{r}$
(iii) ${ }^{n} C_{r}={ }^{n} C_{s} \Rightarrow r=s$ or $r+s=n$
62. (i) $\frac{{ }^{n} C_{r}}{{ }^{n} C_{r-1}}=\frac{n-r+1}{r}$
(ii) $\frac{{ }^{n} C_{r}}{(n-1)} C_{r}=\frac{n}{n-r}$
(iii) $\frac{{ }^{n} C_{r}}{{ }^{(n-1)} C_{r-1}}=\frac{n}{r}$
63. The number of parallelograms formed when a set of m parallel lines are intersecting another set of n parallel lines is ${ }^{m} C_{2} \times{ }^{n} C_{2}$.
64. If there are n points in a plane no three of which are on the same straight line excepting p points which are collinear, then
(i) the number of straight lines formed by joining them is ${ }^{\mathrm{n}} \mathrm{C}_{2}-{ }^{\mathrm{p}} \mathrm{C}_{2}+1$.
(ii) the number of triangles formed by joining them is ${ }^{\mathrm{n}} \mathrm{C}_{3}-{ }^{\mathrm{p}} \mathrm{C}_{3}$.
65. The number of ways that n sovereigns can be given away when there are k applicants and any applicant may have either $0,1,2,3,4,5 \ldots \ldots$ or n sovereigns is ${ }^{(n+k-1)} C_{k-1}$.
66. (i) The number of ways in which exactly r letters can be placed in wrongly addressed envelopes when n letters are putting in n addressed envelopes is ${ }^{n} \mathrm{P}_{\mathrm{r}}\left[1-\frac{1}{1!}+\frac{1}{2!}-\frac{1}{3!}+\ldots+(-1)^{r} \frac{1}{r!}\right]$.
(ii) The number of ways in which n different letters can be put in their n addressed envelopes so that all the letters are in the wrong envelopes $=n!\left[1-\frac{1}{1!}+\frac{1}{2!}-\frac{1}{3!}+\ldots+(-1)^{n} \frac{1}{n!}\right]$.
67. (i) The number of ways of answering one or more of n questions is $2^{n}-1$.
(ii) The number of ways of answering one or more of n questions when each question have an alternative is $3^{n}-1$.
(iii) The number of ways of answering all of n questions when each question have an alternative is 2^{n}.
68. The number of distinct positive integral divisors of $p_{1}^{k_{1}} p_{2}^{k_{2}} \ldots p_{r}^{k_{r}}$ where $p_{1}, p_{2}, \ldots, p_{r}$ are primes in ascending order, is $\left(k_{1}+1\right)\left(k_{2}+1\right) \ldots\left(k_{r}+1\right)$.
69. The sum of distinct positive integral divisors of $p_{1}^{k_{1}} p_{2}^{k_{2}} \ldots p_{r}^{k_{r}}$ where $p_{1}, p_{2}, \ldots, p_{r}$ are primes in ascending order, is $\frac{p_{1}^{k_{1}+1}-1}{p_{1}-1} \cdot \frac{p_{2}^{k_{2}+1}-1}{p_{2}-1} \cdots \cdot \frac{p_{r}^{k_{r}+1}-1}{p_{r}-1}$.
